104 research outputs found

    A proteomics study of chilling injury in tomato fruit, a low-temperature stress-induced physiological disorder affecting fruit quality

    Get PDF
    Trabajo presentado a la conferencia "Molecular Basis of Plant Stress" celebrado en Bulgaria del 21 al 23 de septiembre de 2011.-- FP7 REGPOT Project "BioSupport".Tomato (Solanum lycopersicum L.) is the second most cultivated horticultural crop in the world in terms of harvested area and production, after the potato (FAOSTAT 2011, data from 2009). A main problem regarding its postharvest life is its sensitivity to low temperature stress during refrigerated storage, which constitutes a main obstacle for its long-term commercialization. This sensitivity is reflected in the physiopathy of chilling injury (CI), which negatively affects the final fruit quality. The main symptoms of CI-affected fruits are skin depressions, tissue decomposition and impaired ripening, which results in deficient flavour and aroma. Physiological and biochemical events involved in CI progress have been extensively described, but the precise molecular mechanisms that ultimately regulate the plant response to cold stress remain unclear. In order to investigate this response at molecular level in tomato fruit a proteomics strategy has undertaken. The proteome analysis provides a direct insight on the changes undergone by proteins, which are the major functional determinants of the cell machinery, in a certain biological situation such as low temperature stress. The protein expression profile of chilled tomato fruits has been compared with fruits stored at nonchilling temperature (control). The protein analysis has been performed by two-dimensional differential-in-gel-electrophoresis (2D-DIGE), and mass spectrometry of protein spots was applied to identify proteins differentially expressed. Comparative analysis revealed significant changes in abundance of 31 identified proteins between the proteomes of chilled and control fruits. Major modifications in the expression profile are related to those proteins specifically involved in stress (chaperonins and heat-shock proteins); cell wall biochemistry (hydrolytic enzymes), and carbohydrate metabolism (enzymes involved in glycolisis, tricarboxylic acids cycle, photosynthesis and sucrose biosynthesis).This work was supported by the Spanish Ministry of Science and Innovation (MICINN) through grant and PIE2009-40I080, and by the Council of Science and Technology from the Spanish Region of Murcia (Fundación SENECA) through grant no. 04553/GERM/06.Peer Reviewe

    Evaluation of the morpho-physiological, biochemical and molecular responses of contrasting Medicago truncatula lines under water deficit stress

    Get PDF
    This article belongs to the Special Issue Molecular Analysis of Medicago Spp.Medicago truncatula is a forage crop of choice for farmers, and it is a model species for molecular research. The growth and development and subsequent yields are limited by water availability mainly in arid and semi-arid regions. Our study aims to evaluate the morpho-physiological, biochemical and molecular responses to water deficit stress in four lines (TN6.18, JA17, TN1.11 and A10) of M. truncatula. The results showed that the treatment factor explained the majority of the variation for the measured traits. It appeared that the line A10 was the most sensitive and therefore adversely affected by water deficit stress, which reduced its growth and yield parameters, whereas the tolerant line TN6.18 exhibited the highest root biomass production, a significantly higher increase in its total protein and soluble sugar contents, and lower levels of lipid peroxidation with greater cell membrane integrity. The expression analysis of the DREB1B gene using RT-qPCR revealed a tissue-differential expression in the four lines under osmotic stress, with a higher induction rate in roots of TN6.18 and JA17 than in A10 roots, suggesting a key role for DREB1B in water deficit tolerance in M. truncatula.This study was supported by the Tunisian Ministry of Higher Education and Scientific Research (CBBC02 LR15) and the National Research Foundation of South Africa (GUN 95358) in the framework of the Tunisian-South African Joint Research Collaboration Program (2016–2017).Peer reviewe

    FIVELAB: Laboratorio virtual de Fisiología Vegetal a través de la plataforma MOODLE

    Get PDF
    FiVeLab es un proyecto de innovación docente que incorpora el laboratorio virtual como herramienta básica para el aprendizaje online. Se propone la virtualización de las prácticas de Fisiología Vegetal en Moodle mediante vídeos, códigos QR y gamificación con Socrative. El objetivo fundamental de FiVeLab se enmarca en la modernización de las técnicas pedagógicas y adquisición de competencias digitales por parte del profesorado universitario de la unidad docente de Fisiología Vegetal y supone la consolidación de los recursos educativos virtuales en la metodología de enseñanza de un laboratorio de Fisiología Vegetal dentro de los estudios de Grado de la Facultad de Biología de la UCM. La plataforma virtual utilizada es el entorno Moodle que ofrece herramientas que nos permitirán virtualizar las prácticas de laboratorio de Fisiología Vegetal mediante la edición de vídeos, manuales y guion de prácticas con códigos QR que permiten redirigir al alumno a los distintos vídeos elaborados y cuestionarios de autoevaluación referidos a estas prácticas

    Sustainable Production in the Food Industry Volume 6: Sustainable Primary Production (6): 128-149 (2021)

    Get PDF
    22 Páginas.-- 2 FigurasChallenges in the food industry relate not only to demographic pressure and environment protection, but also to new consumer demands and specific health requirements. Multidisciplinary studies on raw materials, waste valorisation, efficient green technologies, new products and biodegradable smart packaging are needed. Real-time process control, quality, safety and authenticity will rely on powerful proces analytical technology, multi-sensors and advanced computing and digitalisation systemsPeer reviewe

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Anthocyanins: From plant to health

    No full text
    Anthocyanins are a group of natural occurring pigments responsible for the red-blue colour of many fruits and vegetables. Anthocyanins are of interest for two reasons because they cannot only be used in the technological field as natural colorants but also have important implications in the field of human health. Numerous studies indicate the potential effect that this family of flavonoids may have in reducing the incidence of cardiovascular disease, cancer, hyperlipidemias and other chronic diseases through the intake of anthocyanin-rich foods. This review examines existing literature in this area: from plant content and distribution to health implications, including the effect of agronomic and genetic modifications on the anthocyanin content of plants as well as other biotechnological factors and food processing. The bioavailability, metabolism, bioactivity, and epidemiology of anthocyanins will also be reviewed. © 2007 Springer Science+Business Media B.V.Peer Reviewe
    corecore